
OBDX UI Extensions Configurations Guide
Oracle Banking Digital Experience

Release 22.1.0.0.0

Part No. F56934-01

May 2022

OBDX UI Extensions Configurations Guide

May 2022

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001

www.oracle.com/financialservices/

Copyright © 2006, 2022, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Preface .. 1–1

1.1 Intended Audience .. 1–1

1.2 Documentation Accessibility ... 1–1

1.3 Access to Oracle Support ... 1–1

1.4 Structure ... 1–1

1.5 Related Information Sources .. 1–1

2. OBDX Component Extension ... 2–1

3. Segment & JSON context Extension ... 3–1

4. OBDX Validation Extension .. 4–1

5. Calling Custom REST Services .. 5–1

6. Internationalizing and Localizing Applications .. 6–1

Preface

1–1

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

 Customers

 Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:

 Introduction

 Preferences & Database

 Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Release 22.1.0.0.0, refer to the
following documents:

 Oracle Banking Digital Experience Installation Manuals

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

OBDX Component Extension

2–1

2. OBDX Component Extension

This documentation will guide you on how to override existing OBDX components

Pre-requisites

 To override existing component you need following artifacts

 ViewModel

 Html

 Model (optional)

 Resource bundle

 Partial (optional)

 Every extensible component must have module name and unique component name within its
module.

Steps

 If you want to add new component place that component
in <CHANNEL_ROOT_PATH>/extensions/components. It follow the same structure which
is present in components folder. Same thing is applicable for the existing components. If you
want to change anything then copy that component and place it in
extensions/components folder with the same structure.

 If framework component needs to be changed, place the new component code in

extensions/framework folder with same folder structure as in framework/<api/core>
folder.

 If resource bundle needs to be changed for corresponding component then place related
resource bundle in <CHANNEL_ROOT_PATH>/extensions/resources location. Structure
remain same for <CHANNEL_ROOT_PATH>/resources
and <CHANNEL_ROOT_PATH>/extensions/resources folder.

 If you want to customize an existing flow, you need to make an entry of the flow in
<CHANNEL_ROOT_PATH>/extensions/extension.json file against key “flows”. The
customized flow should be present in the <CHANNEL_ROOT_PATH>/extensions/flows
folder.

 You need to make entry of your component, framework component and partial in
<CHANNEL_ROOT_PATH>/extensions/extension.json file

This entry is in two parts.

 Add entry of your component, in array, named as components
“{moduleName}/{componentName}”

 Add entry of your framework component, in array, named as framework
“{api/core}/{componentName}”

 If your component requires partial then add its name, in array, named as partials.
“folder-name/file-name”

Adding entry in extension.json is sufficient after putting the component files in /extensions
folder. Do not change the loader path of the framework components in the actual components.

OBDX Component Extension

2–2

Sample extension.json

{

 “flows”:[“add-biller”],

"components": ["loans/loan-calculations"], "partials": [“account-access/casa-
account-access”],

“framework” : [“api/account-input”, “core/header”]

}

Home

Segment & JSON context Extension

3–1

3. Segment & JSON context Extension

For every application you can override following two properties

 User Type: Type of user

 Context: folder location from which json will be picked

To evaluate this two parameters there are respective functions in
<CHANNEL_ROOT_PATH>/extensions/override/extensions.js file

evaluateSegment function,

 Arguments (roles: [], defaultSegment : String)

 roles[] (array) will contain all the roles mapped to the user

 defaultSegment (string) will contain system evaluated default segment

 Return Value (String,),

Should return string representing what is the segment for respective component
(possible values: ANON | CORPADMIN | RETAIL | CORP | ADMIN)

Description,

If you want to change user type for your application, you can do so by implementing this function
and return required user type for your application.

evaluateContext function,

 Arguments (segment , roles)

 roles[] (array) will contain all the roles mapped to the user

 segment (string) will contain evaluated user segment

 Return Value (String)

Should return string representing what is the context for respective component

Segment & JSON context Extension

3–2

Description,

This function will set context for your components to fetch json artifacts from correct folder. Return
possible value and then json will be fetch from respective location. Using this you can specify menu
for your context.

init function,

Description,

This function takes no argument and returns nothing.

Implement this function if you want to perform any initialization.

getCurrencyFormattingOptions function,

 Arguments (currency: String)

 currency (string) will contain currency code

 Return Value (Object),

Should return an object with the format given in the description.

Description,

If you want to override the default formatting for a currency, you can implement this function and
return the object in the following format for that currency code passed.

 {

 style: "currency",

 currency: currencyCode,

 maximumFractionDigits: maximumFractionDigits,

 minimumFractionDigits: minimumFractionDigits,

 useGrouping: true

 }

You can refer the below link for more formatting options,

Segment & JSON context Extension

3–3

https://www.oracle.com/webfolder/technetwork/jet-
420/jsdocs/oj.IntlNumberConverter.html#IntlNumberConverter

Note:

• Core functionality of Framework Elements like (header, dashboard, menu etc.) are not available
for the modification. You can customize menu options.

• If any component is present in <CHANNEL_ROOT_PATH>/extensions/components will take
precedence over the <CHANNEL_ROOT_PATH>/components.

• All components available under component folder are available for the extension

• If menu.json is to be changed and other are not changed, irrespective of the change, all
files/folders within the base role, for example json/retail need to be copied for new role even if one
file is changed. This is because when you change the context, using evaluateContext function
above, the root for JSON lookup changes, that is why all the JSON files are then looked up from
whatever value is being returned from the evaluateContext method. So, all the JSON files need to
be present in new directory.

How to create/modify menu.json for new Context

Basic structure of your menu.json file should be as follows

[

 {

 "name": "",

 "module": ""

 },

 {

 "name": "",

 "icon": "",

 "submenus": [

 {

 "name": "",

 "submenus": []

 }

https://www.oracle.com/webfolder/technetwork/jet-420/jsdocs/oj.IntlNumberConverter.html#IntlNumberConverter
https://www.oracle.com/webfolder/technetwork/jet-420/jsdocs/oj.IntlNumberConverter.html#IntlNumberConverter

Segment & JSON context Extension

3–4

]

 }

]

All your entries will go in array named as “default”

There are two types of entries

1. Single Menu Option

2. Nested Menu Option

Single Menu Option

Here you can specify following options

{

 "name": "",

 "module": "",

 "applicationType": "",

 "moduleURL": "",

 "type": ""

}

name name of the component you want to load

module module name of the component

Note: Also add component specific configurations wherever required. Please refer out of
the box “menu.json” for each segment. For example below entries are required for some
specific components only.

Segment & JSON context Extension

3–5

applicationType
(optional)

it is component specific configuration

moduleURL (optional) it is component specific configuration

type (optional) it is component specific configuration

Nested Menu Option

This option you can use to group related menus together.

Following JSON denotes 1 menu group

{

 "name": "",

 "icon": "",

 "submenus": []

}

In above JSON

name is, key in resource bundle

icon is, name of icon from OBDX font. This icon will be the icon you want along with
the name.

submenus [] will contain entries same as entry you will do for Single menu option

Sample menu.json

[

 {

 "name": "PAYMENTS_TITLE",

 "icon": "icon-payments",

 "submenus": [

 {

Segment & JSON context Extension

3–6

 "name": "favorites",

 "module": "payments",

 "applicationType": "payments"

 },

 {

 "name": "SETUP",

 "submenus": [

 {

 "name": "manage-payees-billers",

 "module": "payee",

 "applicationType": "payments"

 }

]

 }

]

 },

 {

 "name": "about",

 "icon": "icon-information",

 "type": "MODAL"

 }

]

Home

OBDX Validation Extension

4–1

4. OBDX Validation Extension

All the validation available in the application are maintained
in <CHANNEL_ROOT_PATH>/framework/js/base-models/validations/obdx-
locale.js. Implementer can override and add new validations in the application without changing
this file.

An extension hook is given at <CHANNEL_ROOT_PATH>extensions\override\obdx-locale.js

In this file Implementer can add or override validations.

For Example: If you need to change the pattern which validate Mobile Number. Add updated pattern
in this file as below.

Figure 1 : Sample obdx-locale.js override

OBDX Validation Extension

4–2

Apart from it all the data types used in UI side validation are maintained under
<CHANNEL_ROOT_PATH>/resources/nls/data-types.js where all the regular expressions are
defined.

During Implementation if implementer want to change data types regex, a similar file is present
under <CHANNEL_ROOT_PATH>/extensions/resources/nls/data-types.js there they can
modified the base values.

Along with this data-type.js also has language fall back so if implementer want different set of
validation for other languages so they need to update data type regex for in that particular
resource bundle. E.g. If implementer want different set of validation in Arabic (ar) so they have to
update regex either in <CHANNEL_ROOT_PATH>/resources/nls/data-types.js or
<CHANNEL_ROOT_PATH>/extensions/resources/nls/ar/data-types.js

For guideline perspective they should put the entry in extension one and they have make sure
language lookup is enabled for that particular language in
<CHANNEL_ROOT_PATH>/extensions/resources/nls/data-types.js

OBDX Validation Extension

4–3

Same behaviour is available for <CHANNEL_ROOT_PATH>/resources/nls/format.js where all the
format are maintained.

For taxonomy validation Please refer Oracle Banking Digital Experience Taxonomy
Configuration Guide.

Home

Calling Custom REST Services

5–1

5. Calling Custom REST Services

In implementation if any new services are written by implementer it has been directed to change
the context root for new REST to digx/cz/v1.

For supporting it from the UI, implementer has to pass cz/v1 in the version field of the AJAX setting
from his model.

For example see the snippet below:

Figure 2 : Sample calling Custom REST Services

Home

Internationalizing and Localizing Applications

6–1

6. Internationalizing and Localizing Applications

Oracle Banking Digital Experience User Interface uses Oracle JET as it main library and it supports
internationalization and globalization of web and hybrid mobile applications.

Refer following link for details

https://docs.oracle.com/en/middleware/jet/6/develop/internationalizing-and-localizing-
applications.html

All resource bundle are available under <CHANNEL_ROOT_PATH>/resources/nls directory

In resource bundle file there are two parts i.e. root bundle and supported locale. In root bundle all
the string are present which are required by the application. And in the locale part each locale entry
is there with their lookup. If any particular locale entry is true and OBDX application is open in that
locale then application is lookup for that locale resource bundle which should be present at
<CHANNEL_ROOT_PATH>/resources/nls/<locale>.

For example if OBDX application’s locale is fr then fr resource bundle must be present at
<CHANNEL_ROOT_PATH>/resources/nls/fr location. But for locale specific lookup fr set as true
in the supported locale section of main resource bundle.

Sample root resource bundle.

https://docs.oracle.com/en/middleware/jet/6/develop/internationalizing-and-localizing-applications.html
https://docs.oracle.com/en/middleware/jet/6/develop/internationalizing-and-localizing-applications.html

Internationalizing and Localizing Applications

6–2

Sample Locale specific resource bundle:

Adding/Modify locale in OBDX resource bundle

Locale Configuration Tool is used to modify the locale setting of the resource bundles by a single
command. So you have no need to go to each resource bundle and change locale setting.

By this tool user can perform

 Add New locale

 Enable or Disable any locale.

User need Node setup on their machine and run following command under
<CHANNEL_ROOT_PATH>/_build directory

npm install

To use this utility you have to fire this command

 node locale-config.js <locale> <true | false>

For example node locale-config fr true

Above command will make French locale true in all resource bundles and if there is no locale code
for French locale then it will add French locale with value as true in resource bundle.

Home

